

Mineral Identification using Tetracorder during the TREX Field Campaign

A. V. Steckel, R. N. Clark, T. H. Prettyman, N. Kumari, M. L. Meier, N. C. Pearson, C. J. Ahrens, A. C. Martin, R. V. Patterson, M. Lane, F. Vilas, P. Knightly, D. Wettergreen, M. E. Banks, E. Bell, S. P. Wright, E. Z. Noe Dobrea, A. Hendrix

55th LPSC #2793

3.13.2024

Amanda.Steckel@colorado1edu

Yellow Cat, Utah Field Site

- Yellow Pins: Hyperspectral Scan
- Contour Interval = 40ft (12.2m)
- Map: Utah Geologic Survey, Mollie Hogans Quad

Formation	Member	Map Symbol	
Cedar Mountain	Ruby Ranch	Kcmr	
	Poison Strip	Kcmp	
	Yellow Cat	Kcmy	
Morrison	Brushy Basin	Jmb	
#2793, Amanda.Steckel@colorado.edu			

Yellow Cat, Utah Field Site

- Yellow Pins: Hyperspectral Scan
- Contour Interval = 40ft (12.2m)
- Map: Utah Geologic Survey, Mollie Hogans Quad

Form	nation	Member	Map Symbol		
Cedar Mountain	Ruby Ranch	Kcmr			
	Poison Strip	Kcmp			
	Yellow Cat	Kcmy			
Mor	rison	Brushy Basin	Jmb		
#2793, Amanda.Steckel@colorado.edu					

Tetracorder Results from AVIRIS (18m/pixel)

Kaolinite, Illite/Muscovite mixtures identified in Cliff 1 and Cliff 2

Motivation

Field Site

Methods

Results

#2793, Amanda.Steckel@colorado.edu

Hyperspectral Survey

White Reference

165 Spectral Bands

- Resonon PIKA IR Camera
- Drone Mountable Configuration
- $\lambda = 0.9 \mu m 1.7 \mu m$, 165 bands
- AVIRIS range extended to $2.5 \, \mu m$

Motivation

Field Site

Methods

Results

#2793, Amanda.Steckel@colorado.edu

PikaIR Data Yields Signal near the Water Absorption Band

Tetracorder Expert System

- Input: Calibrated PikalR Datacube
- USGS Mineral Library convolved to match PikalR channels
- Tetracorder Output:
 - **Fit:** Weighted correlation coefficient calculation
 - **Depth:** Weighted band depth calculation
 - **F*D:** Weighted fit times band depth calculation
- Developed for use with AVIRIS (0.35-2.5 µm)
- Python script to group spectra for mineral ID
 - Use Tetracorder results as inputs
 - Set a threshold for mineral ID
 - Compute average spectra of a group
- Manual mineral ID by comparing library spectra

Tetracorder Mineral Groups (Clark+ 1999)

Width and Position of 1.4 μm Features

- Many positions overlap with similar shapes- are they unique enough for ID?
- Do more minerals need to be added to the library?
- Example: Kaolinite, Halloysite, Montmorillonite, and Gypsum

Field Site

Motivation

Methods

- Sulfate
- Neosilicate
- Phyllosilicate
- Gibbsite
- Zeolite
- Vegetation
- Water
- Opal
- Scapolute
- Sodalite
- Elbaite
- Tourmaline
- Mica
- Kaolinite
- Halloysite
- Montmorillonite
- Gypsum

AVIRIS Results editing Tetracorder processing to use the PikalR Spectral Range for Cliff 1

Zeolite_natrolite
sulfate_na82alun100c
ulexite
sulfate_kalun150c

This mineral ID for cliff 1 is not reliable:

1. AVIRIS is averaging over too broad a range (18m/pixel) at a poor angle (imaging steep cliff from overhead).

2. Tetracorder isn't designed to work in reduced spectral range 0.9-1.7µm.

Motivation	Field Site	Methods	Results	#2793, Amanda.Steckel@colorado.edu	11
------------	------------	---------	---------	------------------------------------	----

Conclusion: Hyperspectral surveys provide valuable context for geologic origins

- Commercial drone-mountable instruments (e.g. PikalR) have a limited spectral range, but close distance to target (50m vs. 10,000m) enables some signal through atmospheric water band
- Developing semi-autonomous mineral ID could enable surface exploration in the outer solar system

Next Steps:

- Complete processing cliffs 2 and 3 from Yellow Cat, compare with TREX team VNIR and FTIR data
- More minerals may need to be added to the library
- Contact me about a postdoc!

Motivation	Field Site	Methods	Results	#2793, Amanda.Steckel@colorado.edu	1
------------	------------	---------	---------	------------------------------------	---